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Outline
● Computing RIXS spectra for strongly correlated materials -Why is it challenging? Need for Exact Numerical methods
● Beyond Exact Diagonalization methods-dynamical spectra with DMRG: can we compute RIXS spectra?
● Krylov “trick”: Computing full RIXS spectra using DMRG -Application to quasi-1D cuprates



  

L. Ament et al. RMP 83 705 (2011)
How to compute RIXS spectra? 

 Transition Rate in “resonance” (Kramers-Heisenberg)



  

How we actually compute RIXS spectra 



  

How we actually compute RIXS spectra 
Multiband Hubbard model for valence band and core electrons



  

How we actually compute RIXS spectra 
Multiband Hubbard model for valence band and core electrons

We need to solve two difficult many-body problems!
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Standard solution: “brute force” Exact Diagonalization
Schrödinger's Equation: Example16 orbitals, Hubbard model Size Hilbert space= 416~ 4.3x109 After symmetries: Half-filling (8↑ and 8↓), translationSize Hilbert Space ~ 1.0x107

Many
-body

 spec
trum 

of H

We get the ALL the eigenstates
Powerful, but severely limited in system size!



  

Standard iterative solution: Lanczos Exact Diagonalization
Schrödinger's Equation:

Many
-body

 spec
trum 

of H

We get the low-energy eigenstates

Project      onto the Krylov space iteratively

k<<Hilbert space size!
Diagonal form!

Tridiagonal form!



  

Computation of RIXS spectra: Exact Diagonalization methodLi2CuO2@ O K-edge ED methods can obtain excellent resultsfor small clustersLong (not complete!) list of papers using ED methods References for the 1D cuprates only
Okada, et al. Phys. Rev. B 63, 045103 (2001).Tsutsui, et al. Phys. Rev. Lett. 91, 117001 (2003).Ishii, et al. Phys. Rev. Lett. 94, 207003 (2005).Okada, et al. Phys. Soc. Jpn. 75, 044702 (2006)Vernay, et al. Phys. Rev. B 77, 104519 (2008)..Chen, et al. Phys. Rev. Lett. 105, 177401 (2010).Forte, et al. Phys. Rev. B 83, 245133 (2011).Jia, et al. New J. Phys. 14, 113038, (2012).Kuzian, et al. Phys. Rev. Lett. 109, 117207 (2012).Kourtis, et al. Phys. Rev. B 85, 064423 (2012).Monney, et al. Phys. Rev. Lett. 110, 087403 (2013).Wohlfeld, et al. Phys. Rev. B 88, 195138 (2013).Jia et al. Nat. Commun. 5 (2014).Tohyama, et al. Phys. Rev. B 92, 014515 (2015).Johnston et al. Nat. Commun. 7, 10563 (2016).Tsutsui, et al. Phys. Rev. B 94, 085144 (2016).Schlappa, et al. Nat. Comm .9, 5394 (2018) .Kumar, et al. New J. Phys. 20, 073019 (2018).......

S. Johnston et al.Nat. Comm. 7, 10563 (2016)Cu3O8 cluster (~25 orbitals + phonons)



  

Computation of RIXS spectra: Exact Diagonalization methodLi2CuO2@ O K-edge 

CAN WE OVERCOME THIS PROBLEM?

ED methods can obtain excellent resultsfor small clustersBUTLimited resolution in momentum space!

S. Johnston et al.Nat. Comm. 7, 10563 (2016)Cu3O8 cluster (~25 orbitals + phonons)



  

S.R.White PRL 69 2863 (1992)

Beyond Exact Diagonalization methods: DMRG  
● Variational method to “search” the ground state of arbitrary Many-Body Hamiltonians
● Matrix Product State (MPS) Anzatz for the wave-function for a lattice of L sites

● ADVANTAGE OVER ED METHODS: solution for hundreds of lattice orbitals!
A A AA A

Review: U. Schollwöck, Annals of Physics. 326 96–192 (2011)

AA A AA A



  

Quantum many body wave-functions as Matrix Product States

Review: U. Schollwöck, Annals of Physics. 326 96–192 (2011)

A A AA A AA A AA AGraphical representation of MPS:

How? Singular Value Decomposition!

What’s the advantage of all this? No approximations yet, still 4L coefficients!



  

Variational Optimization of an MPS: DMRG

A A AA A

h h hh h
A A AA A

Review: U. Schollwöck, Annals of Physics. 326 96–192 (2011)
Tensors “A” can be optimized one by one “sweeping” back and forth through the lattice!
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Variational Optimization of an MPS: DMRG

A A AA A

h h hh h
A A AA A

Review: U. Schollwöck, Annals of Physics. 326 96–192 (2011)
Tensors “A” can be optimized one by one “sweeping” back and forth through the lattice!



  

● Ground state solution for “any” Hamiltonian on a 1D Lattice (or quasi 1D)
● Time Evolution:  White & Feiguin, Phys. Rev. Lett. 93 076401 (2004) 
● Finite Temperature: Feiguin & White Phys. Rev. B 72, 220401(R) (2005)
● Dynamical Response functions (except RIXS until now! see next slides)
Limitations
● Becomes inefficient for two dimensional systems (Entanglement area law)

1D chain 2-leg ladder
N-leg cylinder

What can we do with DMRG?  
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EXAMPLEDynamical Spin Structure Factor
Review: Standard dynamical response functions with DMRG 



  

EXAMPLEDynamical Spin Structure Factor
Review: Standard dynamical response functions with DMRG 



  

EXAMPLEDynamical Spin Structure Factor
Review: Standard dynamical response functions with DMRG 

Correction-vector



  

EXAMPLEDynamical Spin Structure Factor
Review: Standard dynamical response functions with DMRG 

Correction-vector DIFFICULT TO CALCULATENEED THE ENTIRE SPECTRUM OF H!

It seems we need to go back to ED for this calculation!



  

Correction-vector

Current DMRG basis→ Tridiagonalization (Krylov)→ Diagonalization→ back to original basis!

For more details, see A. Nocera et al., Phys. Rev. E 94, 053308 (2016) 

EXAMPLEDynamical Spin Structure Factor
Krylov “trick” to compute DMRG correction-vectors 



  

How do we compute the RIXS spectra with DMRG? 

A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Take care of intermediate states

How do we compute the RIXS spectra with DMRG? 

Take care of the final states

A. Nocera et al., Scientific Reports 8, 11080 (2018) 
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Take care of the final states

A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Take care of intermediate states

How do we compute the RIXS spectra with DMRG? 

Take care of the final states

What do we do now?  A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

How do we compute the RIXS spectra with DMRG? 
Let’s define new correction vectors 

A. Nocera et al., Scientific Reports 8, 11080 (2018) 
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How do we compute the RIXS spectra with DMRG? 

We know what to compute now! 
(1) Compute
(2) Compute

A. Nocera et al., Scientific Reports 8, 11080 (2018) 

Let’s define new correction vectors 



  

How do we compute the RIXS spectra with DMRG? 

(1) Compute
(2) Compute We can do it with theKrylov approach!

We know what to compute now! 

A. Nocera et al., Scientific Reports 8, 11080 (2018) 

Let’s define new correction vectors 



  

● Same CuO4 building blocks as 2D cuprates 
● Large Hubbard U~8eV localizes the Cu spin (d9 valence state)

● For T>5K interchain coupling is “zero”
Neudert et al., PRB 62, 10752 (2000); Minzuno et al., PRB 57, 5326 (1998).

   Sr2CuO3 (corner-shared)          
Testing the RIXS-DMRG method: quasi-1D Cuprates 



  

Low energy magnetic excitations in quasi-1D cuprates: Inelastic Neutron Scattering & RIXS
RIXS @ Cu L-edge

J. Schlappa et al. Nature 485, 82 (2012)

Magnetic excitations from INS

Mourigal et al.,  Nat. Phys. 9, 435(2013)



  

Effective Models for 1D cuprate chains

Parameters for the pd-model

K. Wohlfeld et al., PRB 88, 195138 (2013)

Multi-orbital pd model 1-orbital t-J model 

A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Benchmarking our DMRG method against EDMulti-orbital pd model 1-orbital t-J model 

q≃ππ

q≃π-π
q≃π0

Cu4O13 cluster  4 holes L=16 sites cluster 16 holes

q≃ππ
q≃π-πq≃π0

q≃ππ
q≃π-πq≃π0

No spin-flip Spin-flip No spin-flip Spin-flipA. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Beyond ED: large sizes with DMRG! Multi-orbital pd model 

A. Nocera et al., Scientific Reports 8, 11080 (2018) Spin-flipNo Spin-flip



  

Multi-orbital pd model 
DMRG can go up (and beyond) to Cu20O61 cluster (~80 orb) with 20 holes!

Beyond ED: large sizes with DMRG! 

A. Nocera et al., Scientific Reports 8, 11080 (2018) Spin-flipNo Spin-flip



  

1-orbital t-J model with L=64 sites (ED can only do ~20 sites) 
Beyond ED: large sizes with DMRG! 

A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Comparison between multi-orbital pd  and t-J  models

 Scaling factor=0.26Covalency effects are important!

Multi-orbital pd model 

1-orbital t-J model L=20 for both models

A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Summary & Current work 
● Proposed a DMRG based algorithm for computing full RIXS spectra for strongly correlated materials
● Improvement of the RIXS-DMRG algorithm
● Application of the method to different RIXS “edges”, geometries, and Hamiltonians
● Future: Non-equilibrium RIXS-DMRG?Thank you for your attention!



  

How do we treat the core-hole in the intermediate state?
 τ~1/Γ

“site j”

We consider the core-holes (or electrons) completely localized!

NOTE: We can compute spin-conserving and non-spin cons. channels!
Also, we flip the core-hole spin “by hand” so Total Spin is conserved

 ΔS=1S=1
 ΔS=1S=0Three separate calculations

A. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Parallel Algorithm for computing RIXS spectra with DMRG

Computational Cost ~ (number of sites) × (number of “omegas”) simulations!HOWEVER, these can be performed independently in parallel!NEED SUPERCOMPUTERS IN CHALLENGING PROBLEMSNOTE: IT CAN BE APPLIED FOR ANY PROBLEM WHERE DMRG CAN BE USEDA. Nocera et al., Scientific Reports 8, 11080 (2018) 



  

Krylov method for computing DMRG correction-vectors 
Project      onto the “Krylov” space generated by (1)

(2) Diagonalize into the “Krylov” space

k<<Hilbert space size!

(3) Compute the correction vector as 

Stop the procedurefor some 
until convergence on 


